0

Full Content is available to subscribers

Subscribe/Learn More  >

Correlation Between Structural Changes of Materials During Friction and Finite Element Analysis

[+] Author Affiliations
D. Barlam, I. Garbar, L. Levi

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Paper No. WTC2005-63114, pp. 209-210; 2 pages
doi:10.1115/WTC2005-63114
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

The Finite Element Method (FEM) is widely used for modeling strain distribution during friction contact. One of the necessary conditions for such modeling is the correspondence between structural changes in a material surface layers and Finite Element Analysis results. The present study is dedicated to the possibility of using FEM as a tool to predict structural changes of material surface layers during friction depending on material properties and friction conditions. Contact during friction with reciprocating and unidirectional sliding between two surfaces under condition of plane strain had been modeled using commercial Finite Element (FE) code. The correlation between FE results and structural results, obtaining by electron microscopy and X-ray, were studied for the primary and secondary running-in processes. An elastic-plastic model had been used to learn the influence of different contact parameters such as: pressure, hardening, friction coefficient and geometry of asperities on the FE modeling results. Correlation between the FEM predictions and structural results such as dislocation’s density and distribution, were studied in a qualitative manner revealing that plastic strain results can be used to predict structural changes of material under sliding friction.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In