0

Full Content is available to subscribers

Subscribe/Learn More  >

Asperity-Based Models of Micro-Scale Friction

[+] Author Affiliations
George G. Adams

Northeastern University, Boston, MA

Paper No. WTC2005-64386, pp. 193-194; 2 pages
doi:10.1115/WTC2005-64386
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

As surfaces become smoother and loading forces decrease in applications such as MEMS, NEMS, and magnetic recording devices, the size and number of the asperity contacts which comprise the real contact area continues to decrease. The tangential force which is measured between two sliding bodies is the combined result of friction forces which are present in a very large number of nano and micro scale asperity contacts. Recent experiments as well as modeling have shown considerable scale-dependence and nonlinear load-dependence of the friction force. These models will be reviewed and discussed.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In