0

Full Content is available to subscribers

Subscribe/Learn More  >

Adhesive Contact of Bodies Having an Elliptical Contact Area

[+] Author Affiliations
K. L. Johnson, J. A. Greenwood

Cambridge University, Cambridge, UK

Paper No. WTC2005-64177, pp. 189-190; 2 pages
doi:10.1115/WTC2005-64177
From:
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME

abstract

The so-called JKR theory of adhesion between elastic spheres in contact (Johnson, Kendall & Roberts 1971, Sperling 1964) has been widely used in micro-tribology. In this paper the theory is extended to solids of general shape and curvature. It is assumed that the area of contact is elliptical which turns out to be approximately true, though the eccentricity is different from that for non-adhesive contact. Closed form expressions are found for the variation with load of contact radius and displacement, as a function of the ratio of principal relative curvatures of the two bodies in contact. The pull-off force is found to decrease with increasing eccentricity from its value of 3πΔγR/2 in the case of contact of spheres of radius R.

Copyright © 2005 by ASME
Topics: Adhesives

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In