Full Content is available to subscribers

Subscribe/Learn More  >

Modeling Abrasive Wear for Polymers Using Intersecting Scratching Technique

[+] Author Affiliations
Mark Chong Wai Lup, Sujeet K. Sinha, Seh Chun Lim

National University of Singapore, Singapore

Paper No. WTC2005-64071, pp. 167-168; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


This paper aims to model abrasive wear for polymers using intersecting scratching technique. Scratch test and pin-on-disc test were conducted on five different polymers. Wear debris generated by intersecting scratching test was compared and correlated with the specific wear rates of the same polymers in a pin-on-disk test using ground steel surface as the counterface. It is the purpose of this paper to establish that an intersecting scratching test can be used as a means to qualitatively and quantitatively characterize wear performance of polymers.

Copyright © 2005 by ASME
Topics: Wear , Modeling , Polymers



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In