Full Content is available to subscribers

Subscribe/Learn More  >

Characteristics of Tribolayers Observed in A356 Al Alloy — SiCP Composite Discs/Brake Pad During Sliding Wear Tests

[+] Author Affiliations
R. C. Shivamurthy, M. K. Surappa

Indian Institute of Science, Bangalore, India

Paper No. WTC2005-64040, pp. 157-158; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


Tribological characteristics of A356 Al alloy-10 vol. % SiCP composite discs/brake pad has been studied under dry sliding conditions at sliding speeds in the range 2 to 5 m/s and at loads in the range 1–3 MPa. In these tests, disc of Al MMCs and pin of friction pad made of polymer based composite were used. Wear rates of Al MMC disc as calculated by weight loss method, found to be negative at high sliding speed and high load. Worn surface of disc has been analyzed using EDAX. SEM analyses of worn surfaces of composite disc infer transfer of material from pin to the disc resulting in the formation of tribolayers. Two types of tribolayers were observed on the worn surface, one having shiny appearance of copper rich layer and other is dark in colour consisting of Mg, S, Fe, Ba, Ca, Si, Cu, In and Al. In the later layers were rich in copper and appear as bright patchy layers under SEM. Coverage of copper rich layers increase all along and across the worn track at a sliding speed of 4 and 5 m/s in the load range 2 to 3 MPa. Atomic percent of copper increase with load and consequently affect the wear rate of disc. EDAX analysis of dark tribo layers on wear track of composite disc show continuous increase in the amount of Cu and Ba with increase in speed and load. Hence, wear rate of composite discs were relatively low under all test conditions. These results clearly indicate composition of friction material having profound influence on the wear rate of Al MMC discs.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In