Full Content is available to subscribers

Subscribe/Learn More  >

A Numerically Tractable Global Framework for the Feedback Control of Boundary-Layer Perturbations

[+] Author Affiliations
Patricia Cathalifaud, Thomas R. Bewley

University of California at San Diego, La Jolla, CA

Paper No. FEDSM2002-31062, pp. 1463-1468; 6 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


We present a global framework for the feedback control of a large class of spatially-developing boundary-layer flow systems. The systems considered are (approximately) parabolic in the spatial coordinate x. This facilitates the application of a range of established feedback control theories which are based on the solution of differential Riccati equations which march over a finite horizon in x (rather than marching in t, as customary). However, unlike systems which are parabolic in time, there is no causality constraint for the feedback control of systems which are parabolic in space; that is, downstream information may be used to update the controls upstream. Thus, a particular actuator may be used to neutralize the effects of a disturbance which actually enters the system downstream of the actuator location. In the present study, a numerically-tractable feedback control strategy is proposed which takes advantage of this special capability of feedback control rules in the spatially-parabolic setting in order to minimize a globally-defined cost function in an effort to maintain laminar boundary-layer flow.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In