Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Wear of a Soft Coating Deposited on Titanium Alloy During Fretting

[+] Author Affiliations
H. Lee, S. Mall

Air Force Institute of Technology, Wright-Patterson AFB, OH

J. H. Sanders, S. K. Sharma

Air Force Research Laboratory, Wright-Patterson AFB, OH

Paper No. WTC2005-63254, pp. 57-58; 2 pages
  • World Tribology Congress III
  • World Tribology Congress III, Volume 1
  • Washington, D.C., USA, September 12–16, 2005
  • Conference Sponsors: Tribology Division
  • ISBN: 0-7918-4201-0 | eISBN: 0-7918-3767-X
  • Copyright © 2005 by ASME


Fretting behavior of Cu-Al coating on Ti-6Al-4V substrate was investigated with and without fatigue load. Soft and rough Cu-Al coating resulted in abrasive wear and a large amount of debris remained at the contact surface which caused an increase in tangential force during the fretting test under gross slip condition. Fretting in the partial slip condition also showed the wear of coating. To characterize wear, dissipated energies during fretting were calculated from fretting loops and wear volumes were obtained from worn surface profiles. Energy approach of wear analysis showed a linear relationship between wear volume and accumulated dissipated energy. This relationship was independent of fatigue loading condition and extended from partial slip to gross slip regimes.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In