Full Content is available to subscribers

Subscribe/Learn More  >

Unsteady RANS Computations of the Flow Past an Airfoil in the Wake of a Rod

[+] Author Affiliations
Jérôme Boudet, Damiano Casalino, Marc C. Jacob, Pascal Ferrand

Ecole Centrale de Lyon, Ecully, France

Paper No. FEDSM2002-31343, pp. 1137-1142; 6 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


Two-dimensional Reynolds Averaged Navier-Stokes (RANS) equations are solved in order to simulate the interaction between a Kármán vortex street shed from a rod and a NACA-0012 airfoil in the wake of the rod. Two closure turbulence models are tested, a linear and a nonlinear k-ω model, for a chord based Reynolds number Rec ∼ 4.8105 . These models provide consistent results in terms of both mean and fluctuating flow quantities. Insight into the instantaneous vorticity field shows that the vortex shedding pattern near the wall is quite well predicted, despite an over-estimated frequency. Downstream, computations always exhibit head-on interactions of the vortices with the airfoil leading edge whereas the experiments show a more variable configuration.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In