Full Content is available to subscribers

Subscribe/Learn More  >

Monte Carlo Simulation of the Thermal Conductivity and Phonon Transport in Nanocomposites

[+] Author Affiliations
Ming-Shan Jeng, Ronggui Yang, Gang Chen

Massachusetts Institute of Technology, Cambridge, MA

David Song

Intel Corporation, Chandler, AZ

Paper No. IPACK2005-73494, pp. 2207-2215; 9 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


This paper presents a Monte Carlo simulation scheme to study the phonon transport and thermal conductivity of nanocomposites. Special attention has been paid to the implementation of periodic boundary condition in Monte Carlo simulation. The scheme is applied to study the thermal conductivity of silicon germanium (Si-Ge) nanocomposites, which are of great interest for high efficiency thermoelectric material development. The Monte Carlo simulation was first validated by successfully reproducing the results of (two dimensional) nanowire composites using the deterministic solution of the phonon Boltzmann transport equation and the experimental thermal conductivity of bulk germanium, and then the validated simulation method was used to study (three dimensional) nanoparticle composites, where Si nanoparticles are embedded in Ge host. The size effects of phonon transport in nanoparticle composites were studied and the results show that the thermal conductivity of nanoparticle composites can be lower than alloy value. It was found that randomly distributed nanopaticles in nanocomposites rendered the thermal conductivity values close to that of periodic aligned patterns.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In