Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Devices Integrated With Thermoelectric Modules With Applications to CPU Cooling

[+] Author Affiliations
Ioan Sauciuc, Hakan Erturk, Gregory Chrysler, Vikram Bala, Ravi Mahajan

Intel Corporation, Chandler, AZ

Paper No. IPACK2005-73243, pp. 2153-2159; 7 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


Over the past few years, the air cooling technology improvements present diminishing returns for microprocessors cooling applications. Presently most of the proposed future cooling technologies (i.e. pumped liquid cooling or vapor compressor refrigeration) may need some fluid moving device and a large remote heat exchanger which requires additional volume. Due to the complexity, reliability issues and space requirements it is preferred to extend the air cooling within the current form factors and using passive devices. This paper will show that optimized thermoelectric modules combined with two-phase (liquid/vapor) passive devices can further improve the cooling capability compared to conventional air cooling technologies at reasonable thermoelectric cooler (TEC) power consumption. Current computational fluid dynamics programs are not yet well equipped to find out the most optimized TEC geometry (for a given COP and given thermal requirements) in a reasonable amount of computation time. Therefore, two modeling steps are proposed: find out the preliminary TEC geometry using an ID analytical program (based on uniform heat flux and a given COP) and use it as an input to CFD programs (i.e. Icepak®) for detailed predictions. Using this model, we confirmed that the conventional TEC technology must use some spreading device to dissipate the CPU heat to the TEC cold side. Different spreading devices are considered: solid metal, heat pipe, vapor chambers and single/two phase pumped cooling. Their individual performance integrated with TEC will be presented. In addition, we propose that the TEC performance to be controlled as a function of instantaneous CPU power consumption, ambient temperature and other parameters. This controller offers extra flexibility which can be used for either noise reduction or TEC power reduction. However, such power cycling of the TEC may affect the TEC reliability. Power cycling accelerated test data (>500,000 accelerated cycles) have been performed together with the life predictions will be presented in the paper.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In