0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Modeling of Heat Transfer and Phase Transition in Programming the Ovonic Unified Memory Cells

[+] Author Affiliations
Evan Small, Sadegh M. Sadeghipour, Mehdi Asheghi

Carnegie Mellon University, Pittsburgh, PA

Paper No. IPACK2005-73188, pp. 2097-2101; 5 pages
doi:10.1115/IPACK2005-73188
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

An Ovonic Unified Memory (OUM) cell is a semiconductor device that stores data by a thermally induced phase transition between polycrystalline (set) and amorphous (reset) states in a thin film of chalcogenide alloy. The small volume of active media acts as a programmable resistor switching between a high (amorphous) and low (crystalline) resistance state. The change in the film resistivity (>40X dynamic range) caused by this rapid, reversible structural change is measured to detect the state of the cell (set or reset) for read out. OUM can benefit from a simulator capable of predicting the electrical, thermal, and crystallization behavior for design and optimization, particularly at the present stage of the development. This paper reports on the efforts being made to prepare such a numerical simulator, using an existing finite element computer code as the source for thermal and electrical modeling, and a custom crystallization code for phase prediction. Heat generation in the device is by Joule heating and is achieved by passage of the electric current, which is obtained from the electrical simulation. This result appears in the heat source term of the heat transfer equation that is solved for thermal modeling. As the first attempt the Ohmic current-voltage relation was implemented successfully to simulate set and reset in a two dimensional model of OUM. Solution of the drift-diffusion equation is now underway to capture the semiconductor behavior of the I-V curve. A good progress is made however, still more works needs to be done to fully implement the drift diffusion equation.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In