0

Full Content is available to subscribers

Subscribe/Learn More  >

Multidisciplinary Placement Optimization of Heat Generating Electronic Components on Printed Circuit Boards Using Artificial Neural Networks

[+] Author Affiliations
Tohru Suwa, Hamid A. Hadim

Stevens Institute of Technology, Hoboken, NJ

Paper No. IPACK2005-73178, pp. 2079-2086; 8 pages
doi:10.1115/IPACK2005-73178
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

A multidisciplinary placement optimization methodology for heat generating electronic components on printed circuit boards (PCBs) is presented. The methodology includes thermal, electrical and placement criteria involving junction temperature, wiring density, line length for high frequency signals, and critical component location which are optimized simultaneously using the genetic algorithm. A board-level thermal performance prediction methodology which is based on a combination of a superposition method and artificial neural networks (ANNs) is developed for this study. Two genetic algorithms with different thermal prediction methods are used in a cascade in the optimization process. The first genetic algorithm is based on simplified thermal network modeling and it is mainly aimed at finding component locations that avoid any overlap. Compact thermal models are used in the second genetic algorithm leading to more accurate thermal prediction which improves the placement optimization obtained using the first algorithm. Using this optimization methodology, large calculation time reduction is achieved without losing accuracy. To demonstrate the capabilities of the present methodology, a test case involving component placement on a PCB is presented.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In