0

Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Analysis of Three-Dimensional Flow in an Industry-Size Hydrothermal Autoclave Subjected to Non-Uniform Heating

[+] Author Affiliations
Hongmin Li, Guo-Xiang Wang, Edward A. Evans

University of Akron, Akron, OH

Paper No. FEDSM2002-31403, pp. 963-970; 8 pages
doi:10.1115/FEDSM2002-31403
From:
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME

abstract

Hydrothermal growth is an important industrial process to produce piezoelectric crystals such as quartz. It takes place in a cylindrical container called an autoclave, which is filled with aqueous solution at a high temperature and a high pressure. The high temperature growth condition is maintained through electrical resistors on the outer surface of an autoclave. In practice there is a non-uniform heating condition in the circumferential direction. Many theoretical and numerical studies, however, assume an axisymmetric heating condition. This paper presents a numerical analysis of the three-dimensional heat transfer and fluid flow in hydrothermal growth due to such non-uniform heating. The analysis is based on an industry-size autoclave with an aspect ratio of 10. The non-uniform heating is introduced on the surface of both the lower dissolving chamber and the upper growing chamber of an autoclave with and without a baffle at the middle height. The flow and isotherm patterns were obtained with the temperature difference between the two chambers kept at 10 °C. The circumferentially non-uniform temperature has dramatic effects on the three-dimensional flow and therefore the temperature distribution in the autoclave. When the dissolving chamber is subjected to circumferentially non-uniform heating, a baffle is essential to create a uniform growth environment in the growing chamber. To obtain high quality single crystals, however, the temperature control on the growing chamber wall is more important than that on the dissolving chamber wall.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In