Full Content is available to subscribers

Subscribe/Learn More  >

Thermal and Mechanical Properties of Silicone Thermal Interface Materials With Varying Cross-Link Densities

[+] Author Affiliations
Arun Gowda, Annita Zhong, Sandeep Tonapi

GE Global Research Center, Niskayuna, NY

Kaustubh Nagarkar, K. Srihari

State University of New York at Binghamton, Binghamton, NY

Paper No. IPACK2005-73490, pp. 1911-1918; 8 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


Thermal Interface Materials (TIMs) play a key role in the thermal management of microelectronics by providing a path of low thermal impedance between the heat generating devices and the heat dissipating components (heat spreader/sink). In addition, TIMs need to reliably maintain this low thermal resistance path throughout the operating life of the device. Currently, several different TIM material solutions are employed to dissipate heat away from semiconductor devices. Thermal greases, adhesives, gels, pads, and phase change materials are among these material solutions. Each material system has its own advantages and associated application space. While thermal greases offer excellent thermal performance, their uncured state makes them susceptible to pump-out and other degradation mechanisms. On the other hand, adhesives offer structural support but offer a higher heat resistance path. Gels are designed to provide a level of cross-linking to allow the thermal performance of greases and prevent premature degradation. However, the degree of crosslinking can have a significant effect of the behavior of gels. In this research, TIMs with varying cross-linking densities are studied and their thermal and mechanical properties reported. The base resin systems and fillers were maintained constant, while slight compositional alternations were made to induce different degrees of cross-linking.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In