0

Full Content is available to subscribers

Subscribe/Learn More  >

Microstructure and Magnetic Properties of NdFeB Based Nanocomposites to Shock Compression

[+] Author Affiliations
Jin-Chein Lin, M. H. Nien, L. C. Chang

Northern Taiwan Institute of Science and Technology, Taipei, Taiwan

Paper No. IPACK2005-73230, pp. 1849-1855; 7 pages
doi:10.1115/IPACK2005-73230
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

Three typical Nd-Fe-B permanent magnetic alloys of Nd13 Fe75 B6 Al6 , Nd13 Fe79 B6 Si2 and Nd13 Fe80 B6 Zr1 have been presented to study the effect of annealing and shock compression on the microstructure, magnetic and mechanical properties. The response of NdFeB based nanocomposites mixed with medium particle morphologies of Al, Si and Zr, respectively were conducted under high shock pressure. The starting materials were prepared by rapidly quenching and melt-spinning of NdFeB based powders under vacuum at different temperatures. The magnetic properties on Br, Hci and (BH)max tend to increase with rising annealing temperature, and reach their highest value at either 700° or 750°C. The addition of Zr and Si enhance the chemical short range reaction and stablize the residual amorphous matrix. For recovery shock-consolidate compression, Br and Hci reach to a peak value at about 5.5 GPa which can be closely associated with the retention of nanostructure and strong exchange coupling between hard and soft magnetic phases. Secondly, the main work is to experimentally investigate the mechanics of the deformation processes leading to shock-induced chemical reaction. The results showed that the fracture mechanism on three specific magnetic alloys reveal that the Nd13 Fe79 B6 Si2 sample, and the addition of Zr in NdFeB will lead to embrittlement of the ductile morphology.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In