Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Microstructural Characteristics of Electroless Nickel Metallisation on Solderability to Pb-Free Solder Alloys

[+] Author Affiliations
Changqing Liu, David A. Hutt, Dezhi Li, Paul P. Conway

Loughborough University, Loughborough, Leicestershire, UK

Paper No. IPACK2005-73160, pp. 1819-1825; 7 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


This paper aims to gain an insight into the correlation between the microstructure and surface composition of electroless Ni-P and its behaviour during soldering with Pb free alloys including Sn-3.8Ag-0.7Cu, Sn-3.5Ag and Sn-0.7Cu. Ni-P coatings with different P contents were produced through an industrial process on copper metal substrates. The surface morphology of these coatings was observed by Scanning Electron Microscopy (SEM) and the bulk composition was analyzed by means of Energy Dispersive X-ray analysis (EDX). The mechanical properties of the coatings were evaluated by nano-indentation testing under different maximum loads. However, to understand the behaviour of P in Ni-P coatings and deterioration of the coating surfaces during exposure to air, the surfaces of the coatings were also characterised by X-ray Photoelectron Spectroscopy (XPS) for storage at different temperatures. The dependence of the solderability of Ni-P coatings on the storage time and temperature was investigated by wetting balance testing, using an inactive or active flux with or without an inert N2 atmosphere. Finally, the solderability of Ni-P coatings to Pb free solders is correlated with their composition and microstructure (e.g. surface characteristics).

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In