0

Full Content is available to subscribers

Subscribe/Learn More  >

Creep Properties and Microstructure of the Sn-Ag-Cu-Ni-Ge Lead-Free Solder Alloy

[+] Author Affiliations
Noboru Hidaka, Megumi Nagano, Masayoshi Shimoda, Hirohiko Watanabe, Masahiro Ono

Fuji Electric Advanced Technology Company, Ltd., Hino, Tokyo, Japan

Paper No. IPACK2005-73148, pp. 1805-1810; 6 pages
doi:10.1115/IPACK2005-73148
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

A new lead-free solder alloy, Sn-Ag-Cu base adding a small amount of Ni, Ge, has been developed to improve their mechanical properties and prevent oxidation in solder alloys. In this paper, creep properties of two lead-free solder alloys, Sn-3.5Ag-0.5Cu-0.07Ni-0.01Ge (abbr. Sn-3.5Ag-0.5Cu-Ni-Ge) solder and Sn-3.0Ag-0.5Cu solder, were investigated at three temperatures ranging from 313K-398K. It was found that the creep strength of the Sn-3.5Ag-0.5Cu-Ni-Ge solder is higher than that of the Sn-3.0Ag-0.5Cu solder. Especially in the low stress region at 398K, the creep rupture time of the Sn-3.5Ag0.5Cu-Ni-Ge solder is about three times as long as that of the Sn-3.0Ag-0.5Cu solder. The microstructure of these solder alloys show that the addition of Ni was found to refine the effective grain size and provide a fine and uniform distribution of Ag3 Sn in the solidified microstructure. The microstructure of the Sn-3.5Ag-0.5Cu-Ni-Ge solder is more stable than that of the Sn-3.0Ag-0.5Cu solder alloy after aging treatment at 398K, 1000 h. TEM observation was also performed, showing that precipitations of (Cu, Ni)6 Sn5 , the diameter of which are about 0.5 μm, are distributed in the Ag3 Sn/β-Sn phase eutectic area of the Sn-3.5Ag-0.5Cu-Ni-Ge solder after creep test at 398K, 5MPa. It is thought that the precipitations of (Cu, Ni)6 Sn5 contribute to creep strength in the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In