0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Normal Body Force on Fingering Instability of a Liquid Sheet Driven by Shear Stress or Gravity

[+] Author Affiliations
S. Wang, J. S. Marshall

University of Iowa, Iowa City, IA

Paper No. FEDSM2002-31133, pp. 767-772; 6 pages
doi:10.1115/FEDSM2002-31133
From:
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME

abstract

A thin liquid sheet driven by either gravity or shear force along a flat plate exhibits a long-wave fingering instability at the liquid front that leads to development of small rivulets of liquid penetrating into the unwetted part of the plate. Rivulet formation causes uneven surface wetting and degrades coating efficiency of the liquid film. The fingering instability occurs because thicker regions of the liquid sheet experience less resistance from the solid surface, and can hence move forward at a faster rate, than thinner regions of the sheet. As this process proceeds, mass conservation acts to make the thin regions of the sheet thinner in order to supply fluid for the thicker regions of the sheet to move forward. The current paper examines the effect on the fingering instability of a body force, such as gravity or centrifugal acceleration, oriented normal to the plate. The presence of a normal body force gives rise to a normal pressure gradient within the liquid sheet. When one region of the sheet becomes thinner than a neighboring region, the normal body force leads to a pressure force acting parallel to the plate that pushes fluid from the thick regions toward the thin regions of the sheet, thus inhibiting the fingering instability. The paper reports both a linear stability analysis of the fingering instability in the presence of a normal body force and a computational study of the effect of normal body force on rivulet development.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In