Full Content is available to subscribers

Subscribe/Learn More  >

Computation of the Fluid-Structure Interaction Between an Impinging Jet and a Flexible Plate

[+] Author Affiliations
Kak Namkoong, Hyoung G. Choi, J. Y. Yoo

Seoul National University, Seoul, Korea

Paper No. FEDSM2002-31129, pp. 737-742; 6 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


For computation of the FSI (Fluid-Structure Interaction) problems, the combined formulation (Hesla, 1991) is adopted which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. Before tackling complex FSI problems, laminar flow around a freely falling cylinder is considered. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element formulation with ALE (Arbitrary Lagrangian-Eulerian) algorithm and Newton’s equations of motion for cylinder are solved. The adaptive mesh refinement technique is also adopted which uses stress error as a posteriori error estimator together with an efficient variable reordering and element-reordering method for unstructured finite element meshes. The newly reordered global matrix has a much narrower bandwidth than the original one, making the MILU (Nam et al., 2002) preconditioner perform better. The cylinder falls oscillating in the transverse direction and rotating about the center. It rotates in the positive rotational direction while it moves to the positive transverse direction and vice versa. The Strouhal number for a freely falling cylinder is lower than that for a fixed cylinder at the same Reynolds number and this is mainly due to the transverse oscillation. As a second FSI problem, laminar channel flow divided by a thin plate is considered and the dynamic response of the plate under the influence of channel flows is studied. For simplicity, we assume a 2-D laminar flow so that the plate can be modeled by a Bernoulli-Euler beam. The numerical simulation results are compared with Wang (1999). As a third FSI problem, oscillations of a vertical plate in resting fluid are studied and the results are compared with Glück et al. (2001). Finally, an impinging jet flow on a flexible plate is considered. There exists clearly an interaction between the impinging jet and the plate; the plate is deflected due to the impinging jet and the deflected plate then affects the flow field. This fluid-structure interaction continues until the damping by fluid viscosity terminates the vibration of the plate. The frequency response of the plate is different from that in free vibration case because the vibration of the plate is damped by fluid viscosity.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In