0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study of a Free-Surface Shear Layer With and Without the Presence of Surfactants

[+] Author Affiliations
Amy Wamcke Lang, Carlos E. Manglano

St. Louis University, St. Louis, MO

Paper No. FEDSM2002-31127, pp. 723-727; 5 pages
doi:10.1115/FEDSM2002-31127
From:
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME

abstract

A free-surface shear layer was studied to ascertain the effects due to the presence of surface tension gradients on the directional shift of the shear layer and turbulence intensities in the vicinity of the water free-surface. It was found that the presence of surfactants altered the direction of the shear layer in the vicinity of the free surface, with the shear layer being pulled to the higher surface tension side. In addition, the turbulence intensity in the plane of the free surface was dramatically reduced, also leading to damped surface deformations. These results show conclusively that the role surfactants play in turbulent free-surface shear flows needs to be considered.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In