Full Content is available to subscribers

Subscribe/Learn More  >

Numerical Treatment of the Stress Jump Interface Condition for Laminar Flow in a Channel Partially Filled With a Porous Material

[+] Author Affiliations
Marcelo J. S. de Lemos, Renato Alves da Silva

Instituto Tecnológico de Aeronáutica — ITA, São José dos Campos, SP, Brazil

Paper No. FEDSM2002-31126, pp. 715-722; 8 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


A number of natural and engineering systems can be characterized by some sort of porous structure through which a working fluid permeates. Boundary layers over tropical forests and spreading of chemical contaminants through underground water reservoirs are examples of important environmental flows that can benefit form appropriate mathematical treatment. For hybrid media, involving both a porous structure and a clear flow region, difficulties arise due to the proper mathematical treatment given at the interface. The literature proposes a jump condition in which stresses at both sides of the interface are not of the same value. The objective of this paper is to present a numerical implementation for solving such hybrid medium, considering here a channel partially filled with a porous layer through which fluid flows in laminar regime. One unique set of transport equations is applied to both regions. Numerical results are compared with available analytical solutions in the literature for two cases, namely, with and without the non-linear Forchheimer term. Results are presented for the mean velocity across both the porous structure and the clear region. The influence of medium properties, such as porosity and permeability, is discussed.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In