0

Full Content is available to subscribers

Subscribe/Learn More  >

3D-SOP Millimeter-Wave Functions for High Data Rate Wireless Systems Using LTCC and LCP Technologies

[+] Author Affiliations
J.-H. Lee, S. Sarkar, S. Pinel, J. Papapolymerou, J. Laskar, M. M. Tentzeris

Georgia Institute of Technology, Atlanta, GA

Paper No. IPACK2005-73127, pp. 1607-1611; 5 pages
doi:10.1115/IPACK2005-73127
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

In this paper, the development of three-dimensional (3-D) millimeter-wave functions in multilayer low temperature cofired ceramic (LTCC) and liquid crystal polymer (LCP) technologies is presented for millimeter-wave compact and easy-to-design passive solutions for high data rate wireless systems. Both ceramic and organic technologies are candidates for the 3-D integration of system-on-package (SOP) miniaturized RF/microwave/millimeter-wave systems. LTCC has been widely used as a packaging material because of its process maturity/stability and its relatively high dielectric constant that enables a significant reduction in the module/function dimensions. As an alternative, LCP is an organic material that offers a unique combination of electrical, chemical, and mechanical properties, enabling high-frequency designs due to its ability to act as both the substrate and the package for flexible and conformal multilayer functions. A LTCC patch resonator filter that uses vertical coupling overlap and transverse cuts as design parameters has been designed to achieve a high level of miniaturization and a great compromise between compactness and power handling. Excellent agreement between the simulation and the measurement has been verified for two operating frequency bands (58–60GHz/38–40GHz) of RF communications and sensors for applications such as wireless broadband internet or inter-satellite communications. A band pass filter has been fabricated on LCP substrate, offering a very simple, low loss flexible and low lost filtering solution for wideband millimeter waves applications such as 60 GHz WLAN short-range gigabit wireless systems. The design exploits the ripple near the cut off frequency of Tchebysheff low pass filter to create a band pass response and it exhibits the insertion loss as low as 1.5 dB at the center frequency of 60GHz and 3-dB bandwidth of 16.7% (∼10 GHz).

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In