Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Simulation Benchmark of Graphic Module Under Installed, Operating Conditions

[+] Author Affiliations
Fariborz Forghan

Advanced Consulting Engineering, Canton, MA

Gregory J. Kowalski, Hameed Metghalchi

Northeastern University, Boston, MA

Mansour Zenouzi

Wentworth Institute of Technology, Boston, MA

Paper No. IPACK2005-73370, pp. 1509-1521; 13 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


The thermal performance of a graphic module on graphic card is theoretically and experimentally investigated. Unlike prior benchmark studies, this study involves a practical electronic device operating in a real software environment. The temperatures at five locations on the module and at one point on the board are measured as a function of time during the operation of a series of computer games. The theoretical model is developed using Flotherm to simulate the transient thermal response. There is close agreement from 3% to 10% between the numerical steady state case prediction and test data. The calculated transient trends using Flotherm model closely agree with experimental results and demonstrate the rapid increase in temperature as the number of module operations increases during the games. The results for the maximum temperature are directly linked to the software operation and exhibit a superposition type behavior in which the observed maximum operating temperature can exceed that estimated by steady state conditions. As expected, the results demonstrate that a carefully constructed thermal simulation can accurately predict the thermal response of a module under actual operating conditions.

Copyright © 2005 by ASME
Topics: Simulation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In