0

Full Content is available to subscribers

Subscribe/Learn More  >

High Resolution Characterization of Materials Used in Packages Through Digital Image Correlation

[+] Author Affiliations
V. Srinivasan, S. Radhakrishnan, X. Zhang, G. Subbarayan

Purdue University, West Lafayette, IN

T. Baughn

Raytheon Systems Corporation, Dallas, TX

L. Nguyen

National Semiconductor Corporation, Santa Clara, CA

Paper No. IPACK2005-73258, pp. 1471-1478; 8 pages
doi:10.1115/IPACK2005-73258
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

In this study, we demonstrate a simple, full field displacement characterization technique based on digital image correlation (DIC). We develop a robust correlation measure implemented in a code and use it to characterize materials at high spatial and displacement resolution. We describe the methods implemented in the DIC code and compare against those available in the literature. We show how sample preparation may be entirely eliminated by using the natural speckle inherent in specular (rough) surfaces. We demonstrate further that the use of natural speckle enables very high spatial resolution (100 microns or less) since creating artificial speckle patterns in miscroscale spatial regions is a significant challenge. The software is also designed to be robust to varying contrasts between the deformed and the undeformed images. Its accuracy is enhanced by using NURBS (Non-Uniform Rational B-Spline) as the interpolating function in the code. We demonstrate the developed software and the underlying procedure on several packaging problems of interest. We measure the CTE of Alumina (Al2O3) using its natural speckle, we calculate the strain and therefore the modulus during mechanical testing of composite materials and we characterize the time dependent behavior of a micro-fiber reinforced composite (RT/Duroid) at high temperature.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In