Full Content is available to subscribers

Subscribe/Learn More  >

Lead-Free and PbSn Bump Electromigration Testing

[+] Author Affiliations
Stephen Gee, Nikhil Kelkar

National Semiconductor, Santa Clara, CA

Joanne Huang, King-Ning Tu

University of California at Los Angeles, Los Angeles, CA

Paper No. IPACK2005-73417, pp. 1313-1321; 9 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


As the electronics industry continues to push for miniaturization, several reliability factors become vital issues. The demand for a high population of smaller and smaller solder bumps, while also increasing the current, have resulted in a significant increase in the current density. As outlined in the International Technology of Roadmap for Semiconductors (ITRS), this trend makes electromigration the limiting factor in high density packages. The heightened current density and correspondingly elevated operating temperatures are a critical issue in reliability since these factors facilitate the effects of electromigration. Therefore, as bump sizes continue to decrease, the study of electromigration reliability becomes crucial in order to understand and possibly prevent the causes of failure. A systematic study of electromigration in eutectic SnPb and Pb-free solder bumps was conducted in order to characterize the reliability of the Micro SMD package family. The testing includes both eutectic 63Sn-37Pb and 95.5Sn4.0Ag-0.5Cu solder bumps on an Al/Ni(V)/Cu under-bump-metallization. Mean-time-to-failure results are compared to Black’s Equation and cross-sections of the solder bumps are shown to analyze the mechanisms that led to failure.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In