0

Full Content is available to subscribers

Subscribe/Learn More  >

Understanding and Testing for Drop Impact Failure

[+] Author Affiliations
S. K. W. Seah, C. T. Lim

National University of Singapore, Singapore

E. H. Wong, R. Ranjan

Institute of Microelectronics, Singapore

Y.-W. Mai

University of Sydney, Sydney, NSW, Australia

Paper No. IPACK2005-73047, pp. 1089-1094; 6 pages
doi:10.1115/IPACK2005-73047
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

This paper presents the results of experiments aimed at studying the effects of drop impact on portable electronics and reproducing these effects in controllable tests. Firstly, a series of drop tests were performed on consumer products (mobile phones and PDAs) to understand how the printed circuit board (PCB) within a product behaves in actual drop conditions. These product-level drop tests show that in drop impact, there are three possible types of mechanical response which can stress the 2nd level interconnections of CSP and BGA packages, namely: 1) flexing of the PCB on its supports, dominated by the 1st (fundamental) natural frequency; 2) flexing of the PCB resulting from direct impact or knocking against the PCB, typically dominated by higher natural frequencies; and 3) inertia loading on the solder joints due to high accelerations. Next, a series of board-level experiments were designed to separately study each of the three types of mechanical response. Board flexing due to direct impacts is the most severe response due to the strong strain amplitudes generated. Given the same input shock, the conventional board-level test — where the PCB flexes on its supports — produces much lower strain amplitudes. Inertia loading on the solder joints is practically negligible. Since PCB flexing is the main failure driver, a simple vibration test, which reproduces the strains observed in drop impact, is suggested as an alternative to time-consuming drop impact tests.

Copyright © 2005 by ASME
Topics: Drops , Testing , Failure

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In