Full Content is available to subscribers

Subscribe/Learn More  >

Super-Fine Structure in the Critical Flow-Rate of Critical Flow Venturi Nozzles

[+] Author Affiliations
Masahiro Ishibashi

NMIJ/AIST, Tsukuba, Japan

Paper No. FEDSM2002-31079, pp. 105-114; 10 pages
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME


It is shown that critical flow Venturi nozzles need time intervals, i.e., more than five hours, to achieve steady state conditions. During these intervals, the discharge coefficient varies gradually to reach a value inherent to the pressure ratio applied. When a nozzle is suddenly put in the critical condition, its discharge coefficient is trapped at a certain value then afterwards approaches gradually to the inherent value. Primary calibrations are considered to have measured the trapped discharge coefficient, whereas nozzles in applications, where a constant pressure ratio is applied for a long time, have a discharge coefficient inherent to the pressure ratio; inherent and trapped coefficients can differ by 0.03–0.04%.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In