0

Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of the Effect of Upstream Conditions on Smooth and Rough Zero Pressure Gradient Turbulent Boundary Layer Flows at Very High Reynolds Numbers

[+] Author Affiliations
Luciano Castillo, Junghwa Seo

Rensselaer Polytechnic Institute, Troy, NY

T. Gunnar Johansson

Chalmers University of Technology, Göteborg, Sweden

Horia Hangan

University of Western Ontario, London, ON, Canada

Paper No. FEDSM2002-31069, pp. 37-47; 11 pages
doi:10.1115/FEDSM2002-31069
From:
  • ASME 2002 Joint U.S.-European Fluids Engineering Division Conference
  • Volume 1: Fora, Parts A and B
  • Montreal, Quebec, Canada, July 14–18, 2002
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-3615-0 | eISBN: 0-7918-3600-2
  • Copyright © 2002 by ASME

abstract

A 2D turbulent boundary layer experiment in a zero pressure gradient (ZPG) has been carried out using two cross hot-wire probes. The mean velocity and all non-zero Reynolds stresses were measured in a number of positions, 14–28 m from the inlet of the wind tunnel over a rough and a smooth surface. Wind tunnel speeds of 10 m/s and 20 m/s were set up in order to test the effect of the upstream conditions on the downstream flow. The long test section allowed us to investigate the mean velocity and Reynolds stresses dependence on the local Reynolds number and the initial conditions at very high Reynolds number (i.e. Rθ ∼ 120,000). Furthermore, it will be shown that the mean velocity deficit profiles and some of the Reynolds stresses collapse when the upstream conditions are kept fixed for smooth and rough surface.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In