Full Content is available to subscribers

Subscribe/Learn More  >

Development of Integrated Process-Ageing Modeling Methodology for Flip Chip on Flex Interconnections With Non-Conductive Adhesives

[+] Author Affiliations
Xiaowu Zhang, E. H. Wong, Ranjan Rajoo, Mahadevan K. Iyer

Institute of Microelectronics, Singapore

J. F. J. M. Caers, X. J. Zhao

Philips Applied Technologies-Asia Pacific, Singapore

Paper No. IPACK2005-73020, pp. 849-856; 8 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


This paper presents a comprehensive methodology to model the static temperature-humidity (TH) ageing test (85°C/85%RH over 1000 hours) of flip chip on flex interconnections with non-conductive adhesives (NCAs). Nonconductive adhesives, being a special form of conductive adhesives, are chosen, as they allow bringing the pitch further down. The methodology combines experimental techniques for material characterization, finite element modeling (FEM) and model validation. A non-conductive adhesive (NCA) has been characterized using several techniques. The thermomechanical properties and the moisture properties were obtained for the NCA. A temperature dependent viscoelastic constitutive model was also obtained for the NCA. The viscoelastic model was defined by the Prony series expansion. The shift factor was approximated by the Williams-Landel-Ferry (WLF) equation. Finite element modeling has been performed to analyze the flip chip interconnects on flex with the NCA under process condition and reliability ageing conditions. The viscoelastic constitutive relation has been used to model the NCA in ageing modeling. An integrated process-ageing modeling methodology has been developed to combine the thermo-mechanical stress and hygro-mechanical stress, followed by stress relaxation analysis. To verify the finite element models, the static TH ageing test (85°C/85%RH) were also performed. The contact resistance was monitored with high measuring resolution during the accelerated test. The simulation results are good agreement with the experimental results. The approach developed in this paper can be used to provide guidelines with respect to adhesive material properties, assembly process parameters and good reliability performances.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In