0

Full Content is available to subscribers

Subscribe/Learn More  >

Laser-Induced Damage of Polycrystalline Silicon Optically Powered MEMS Actuators

[+] Author Affiliations
Justin R. Serrano, Leslie M. Phinney, Carlton F. Brooks

Sandia National Laboratories, Albuquerque, NM

Paper No. IPACK2005-73322, pp. 761-766; 6 pages
doi:10.1115/IPACK2005-73322
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

Optical MEMS devices are commonly interfaced with lasers for communication, switching, or imaging applications. Dissipation of the absorbed energy in such devices is often limited by dimensional constraints which may lead to overheating and damage of the component. Surface micromachined, optically powered thermal actuators fabricated from two 2.25 μm thick polycrystalline silicon layers were irradiated with 808 nm continuous wave laser light with a 100 μm diameter spot under increasing power levels to assess their resistance to laser-induced damage. Damage occurred immediately after laser irradiation at laser powers above 275 mW and 295 mW for 150 μm diameter circular and 194 μm by 150 μm oval targets, respectively. At laser powers below these thresholds, the exposure time required to damage the actuators increased linearly and steeply as the incident laser power decreased. Increasing the area of the connections between the two polycrystalline silicon layers of the actuator target decreases the extent of the laser damage. Additionally, an optical thermal actuator target with 15 μm × 15 μm posts withstood 326 mW for over 16 minutes without exhibiting damage to the surface.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In