Full Content is available to subscribers

Subscribe/Learn More  >

Experimental Investigation of the Miniature Loop Heat Pipe With Flat Evaporator

[+] Author Affiliations
Randeep Singh, Aliakbar Akbarzadeh

Royal Melbourne Institute of Technology, Bundoora, VIC, Australia

Masataka Mochizuki, Thang Nguyen, Vijit Wuttijumnong

Fujikura, Ltd., Tokyo, Japan

Paper No. IPACK2005-73498, pp. 697-702; 6 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


Loop heat pipe (LHP) is a very versatile heat transfer device that uses capillary forces developed in the wick structure and latent heat of evaporation of the working fluid to carry high heat loads over considerable distances. Robust behaviour and temperature control capabilities of this device has enable it to score an edge over the traditional heat pipes. In the past, LHPs has been invariably assessed for electronic cooling at large scale. As the size of the thermal footprint and available space is going down drastically, miniature size of the LHP has to be developed. In this paper, results of the investigation on the miniature LHP (mLHP) for thermal control of electronic devices with heat dissipation capacity of up to 70 W have been discussed. Copper mLHP with disk-shaped flat evaporator 30 mm in diameter and 10 mm thickness was developed. Flat evaporators are easy to attach to the heat source without any need of cylinder-plane-reducer saddle that creates additional thermal resistance in the case of cylindrical evaporators. Wick structure made from sintered nickel powder with pore size of 3–5 μm was able to provide adequate capillary forces for the continuos circulation of the working fluid, and successfully transport heat load at the required distance of 60 mm. Heat was transferred using 3 mm ID copper tube with vapour and liquid lines of 60 mm and 200 mm length respectively. mLHP showed very reliable start up at different heat loads and was able to achieve steady state without any symptoms of wick dry-out. Tests were conducted on the mLHP with evaporator and condenser at the same level. Total thermal resistance, R total of the mLHP came out to be in the range of 1–4°C/W. It is concluded from the outcomes of the investigation that mLHP with flat evaporator can be effectively used for the thermal control of the electronic equipments with restricted space and high heat flux chipsets.

Copyright © 2005 by ASME
Topics: Heat pipes



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In