0

Full Content is available to subscribers

Subscribe/Learn More  >

Internal Thermal Management of IBM P-Server Large Format Multi-Chip Modules Utilizing Small Gap Technology

[+] Author Affiliations
Patrick A. Coico, Gaetano Messina, Steven Ostrander, Jeffrey Zitz, Wei Zou

IBM, Hopewell Junction, NY

Paper No. IPACK2005-73422, pp. 611-616; 6 pages
doi:10.1115/IPACK2005-73422
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

The large Multi-Chip Modules (MCM) used in the IBM p-Server computer systems, and their predecessors, have required rather unique cooling solutions and module hardware designs in order to meet the thermal, mechanical and reliability requirements placed on the package. The module internal thermal solution has evolved from a spring-loaded metal contact technology to a thermal compound based design using a novel gap adjustment technology employing a soldered conduction component. This current MCM makes use of a novel technology called Small Gap Technology (SGT). This technique makes it possible to control thermal compound interface thicknesses or gaps to a very tight tolerance from chip-to-chip and module-to-module. Heat flux values that have been handled vary from approximately 20 to 53 W/cm2 depending on the type of chip and the system performance level. Even higher heat fluxes have been projected for next generation products. The hardware and processing techniques employed to manufacture these modules are quite unique. These products are typically on the order of 100mm chip carrier size or 140mm overall module footprint on a side (approximately 90 cm2 of carrier area) and contain 8 chips and numerous discrete devices. The process fixturing and equipment must be able to handle the relatively large thermal mass of the components. The sequence of processing steps must take into account limitations on the material properties of the various module components. This paper will describe the SGT thermal management solution. The hardware and process employed to make the gap adjustments and the thermal interface material used in these high heat flux applications will be discussed. In addition, supporting thermal/mechanical modelling, thermal performance data and reliability data will be presented.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In