Full Content is available to subscribers

Subscribe/Learn More  >

Thermal Resistance of Bond-Lines Formed With Composite Thermal Interface Materials

[+] Author Affiliations
Gary Lehmann, Hao Zhang

State University of New York at Binghamton, Binghamton, NY

Arun Gowda, David Esler

GE Global Research, Niskayuna, NY

Paper No. IPACK2005-73380, pp. 503-509; 7 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


Measurements and modeling of the thermal resistance of thin (< 100 microns) bond-lines are reported for composite thermal interface materials (TIMs). The composite TIMs consist of alumina particles dispersed in a polymer matrix to form six different adhesive materials. These model TIMs have a common matrix material and are distinguished by their particle size distributions. Bond-lines are formed in a three-layer assembly consisting of a substrate-TIM-substrate structure. The thermal resistance of the bond-line is measured, as a function of bond-line thickness, using the laser flash-technique. A linear variation of resistance with bond-line thickness is observed; Rbl = β · Lbl + Ro . A model is presented that predicts the effective thermal conductivity of the composite as a function of the particle and matrix conductivity, the particle-matrix surface conductance, the particle volume fraction and the particle size distribution. Specifically a method is introduced to account for a broad, continuous size distribution. A particle-matrix surface conductance value of ∼10W/mm2 K is found to give good agreement between the measured and predicted effective thermal conductivity values of the composite TIMs.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In