Full Content is available to subscribers

Subscribe/Learn More  >

Airflow Uniformity Through Perforated Tiles in a Raised-Floor Data Center

[+] Author Affiliations
James W. VanGilder

American Power Conversion Corporation, Billerica, MA

Roger R. Schmidt

IBM Corporation, Poughkeepsie, NY

Paper No. IPACK2005-73375, pp. 493-501; 9 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


The maximum equipment power density (e.g. in power/rack or power/area) that may be deployed in a typical raised-floor data center is limited by perforated tile airflow. In the design of a data center cooling system, a simple estimate of mean airflow per perforated tile is typically made based on the number of CRAC’s and number of perforated tiles (and possibly a leakage airflow estimate). However, in practice, many perforated tiles may deliver substantially more or less than the mean, resulting in, at best, inefficiencies and, at worst, equipment failure due to inadequate cooling. Consequently, the data center designer needs to estimate the magnitude of variations in perforated tile airflow prior to construction or renovation. In this paper, over 240 CFD models are analyzed to determine the impact of data-center design parameters on perforated tile airflow uniformity. The CFD models are based on actual data center floor plans and the CFD model is verified by comparison to experimental test data. Perforated tile type and the presence of plenum obstructions have the greatest potential influence on airflow uniformity. Floor plan, plenum depth, and airflow leakage rate have modest effect on uniformity and total airflow rate (or average plenum pressure) has virtually no effect. Good uniformity may be realized by using more restrictive (e.g. 25%-open) perforated tiles, minimizing obstructions and leakage airflow, using deeper plenums, and using rectangular floor plans with standard hot aisle/cold aisle arrangements.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In