0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Next Generation Computer Graphic Card Blower Fan Speed on Thermal Performance and Acoustic Noise With Psychoacoustic Metrics

[+] Author Affiliations
Helen Ule, Colin Novak, Robert Gaspar

University of Windsor, Windsor, ON, Canada

Arunima Panigrahy

Millennium Electronics, Inc., San Jose, CA

Gamal Refai-Ahmed

ATI Technologies, Inc., Markham, ON, Canada

Paper No. IPACK2005-73180, pp. 239-243; 5 pages
doi:10.1115/IPACK2005-73180
From:
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME

abstract

Graphic Processor Units (GPUs) on the latest models of computer graphic cards generate significant amounts of heat. In fact, the required dissipation rate is so large that cooling fans mounted on heat-sinks must be used to maintain satisfactory GPU temperatures. The packaging of these fans is small and similar designs have been used for cooling of electronic packaging for decades. The appropriate application of these fans as well as their optimal design for minimal noise generation and maximum air movement has not kept pace with that of large industrial sized fans. Where space limitations allow and heat transfer requirements dictate, blower type fans are implemented because they are capable of delivering relatively high flow rates in high impedance environments when they are compared to more traditional axial flow fans. The operation of these blower fans, particularly at high speeds, results in the generation of noise which is experienced by the user. Both computer manufacturers and consumers alike have deemed this noise to be excessive and annoying. The fan model predictions and the operational reality of the higher fan speeds needed to deliver increased air flow both lead to the reality of higher noise levels. The purpose of this study was to experimentally investigate the realized thermal and acoustic performance of a blower style fan-sink mounted on an advanced graphics port (AGP) card. The goal of this investigation was to determine what thermal benefits of higher flow rate are realized by the blower fan at the expense of increased noise emissions. The experimental results of thermal measurement results spanning the operating speed of the fan are presented and accompanied by the noise data. These data include both traditional acoustic analysis techniques using sound pressure and power level measurements as well as psychoacoustic metrics. The result of the thermal testing suggests that the rate of improvement in thermal performance decreases as the blower fan speed increases. As expected, an increase in noise level was also observed. Of particular interest were the results of the psychoacoustic analysis which indicate a similar detrimental effect with increased fan speed for some metrics, while other metrics indicate no change across the operating speed range of the blower fan.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In