Full Content is available to subscribers

Subscribe/Learn More  >

Forced Convective Heat Transfer for Partially-Confined Compact PPF Heat Sinks With Top-Bypass Effect

[+] Author Affiliations
T. Y. Wu, M. P. Wang, J. T. Horng, S. F. Chang, Y. H. Hung

National Tsing Hua University, Hsinchu, Taiwan

Paper No. IPACK2005-73121, pp. 169-176; 8 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


A series of experimental investigations with a stringent measurement method on the study of the fluid flow and heat transfer for confined compact heat sinks in forced convection have been successfully conducted. From the results, the thermal capacity of the heat sink and the convective heat dissipation play the major roles for dominating the transient thermal behavior in the beginning of power-on transient period; while, the convective heat dissipation finally becomes the solely dominating term at the end of power-on transient period. The transient/steady-state local and average Nusselt numbers increase with increasing Grs, H/Hc ratio or Re. As compared with the steady-state average Nusselt number for non-compact heat sink (Fin-Al/ Base-Al), the steady-state heat transfer enhancement for compact heat sinks (Fin-Al/Base-Al) is 185.74%. Furthermore, a new correlation of steady-state average Nusselt number in terms of relevant influencing parameters for confined compact PPF heat sinks in forced convection is proposed. As compared with two existing correlations of steady-state average Nusselt numbers for unconfined and confined non-compact PPF heat sinks, the heat transfer enhancements for the present confined compact PPF heat sinks of H/Hc = 0.47 are 423.29% and 219.93%, respectively.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In