Full Content is available to subscribers

Subscribe/Learn More  >

Transient Performance of a Finned PCM Heat Sink

[+] Author Affiliations
V. Shatikian, G. Ziskind, R. Letan

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Paper No. IPACK2005-73113, pp. 137-142; 6 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


The present study explores numerically the transient performance of a heat sink based on a phase change material (PCM), during the process of melting. Heat is transferred to the sink through its horizontal base, to which vertical fins made of aluminum are attached. The phase change material is stored between the fins. Its properties, including the melting temperature, latent and sensible specific heat, thermal conductivity and density in solid and liquid states, are based on a commercially available paraffin wax. A parametric investigation is performed for melting in a relatively small system, 10mm high, where the fin thickness is 1.2mm, and the distance between the fins varies from 2mm to 8mm. The temperature of the base varies from 12°C to 24°C above the mean melting temperature of the PCM. Transient numerical simulations are performed, yielding temperature evolution in the fins and the PCM. The computational results show how the transient phase-change process, expressed in terms of the volume melt fraction of the PCM, depends on the thermal and geometrical parameters of the system, which relate to the temperature difference between the base and the mean melting temperature, and to the thickness of the PCM layer.   This paper was also originally published as part of the Proceedings of the ASME 2005 Heat Transfer Summer Conference.

Copyright © 2005 by ASME
Topics: Heat sinks



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In