Full Content is available to subscribers

Subscribe/Learn More  >

A Conjugate Numerical-RC Network Prediction of the Transient Thermal Response of a Power Amplifier Module in Handheld Telecommunication

[+] Author Affiliations
Tien-Yu Tom Lee, Victor A. Chiriac

Freescale Semiconductor, Inc., Tempe, AZ

Roger Stout

On Semiconductor, Inc., Phoenix, AZ

Paper No. IPACK2005-73090, pp. 105-112; 8 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


A study compares two different approaches (numerical vs. RC Network) used to predict the transient thermal response of a Radio Frequency (RF) Power Amplifier (PA) module at a given duty cycle (power on and off periodically) in handheld telecommunication. In the numerical approach, commercial software is used to predict device’s transient thermal response at any arbitrary time of interest for a given set of material properties. To predict the peak and valley temperatures of the device when it reaches steady state, a new methodology is presented, combining the steady state temperature at an averaged power and the temperature difference between single-pulse (at averaged power) and a periodical curve at peak or valley. For multiple heat sources, a linear superposition theory applies. Temperature at any given junction and at any specific time, is a linear superposition of its response to the power applied at all junctions (including itself) summed up over all preceding time history. In the analytical Resistor-Capacitor (RC) network approach, the R’s (thermal resistances) and τ’s (time constants) in a single-pulse are predicted using linear regression curve fitting techniques. For a single-pulse RC model, superposition methodology is applied to solve the transient response in any waveform (single or multiple waves in a cycle). A formulated spreadsheet performs the calculation, with inputs such as pulse width, waiting time (before the pulse is initiated), pulse magnitude and period. The peak and valley temperatures at steady state for a single square wave per cycle are predicted through closed form solutions. For multiple square waves per cycle, individual wave responses must be added together throughout the entire range of the steady state cycle to determine the locations (time) of the peaks and valleys. In order to compare these two approaches, two case studies were conducted on a PA module for a cell phone application: at 12.5% duty cycle and at three-square wave per cycle. Results show good agreement between the numerical and RC model approaches, either at any arbitrary time or at “peak and valley” in steady state. Although the RC network method requires an intermediate creation of the RC model from single pulse numerical solutions (or from experimental measurement), the total time and effort to achieve similar results as compared to the direct numerical method may be considerably reduced. Further, once created, the RC model permits essentially unlimited flexibility and extremely rapid computation for arbitrary power cycling, whereas the direct numerical approach requires “starting over” with every different power cycling description of interest.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In