Full Content is available to subscribers

Subscribe/Learn More  >

Printed Circuit Board Thermal Modeling Without the Use of an Effective Thermal Conductivity

[+] Author Affiliations
Richard L. Sampson

Consultant, Auburn, CA

Paper No. IPACK2005-73013, pp. 19-25; 7 pages
  • ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems collocated with the ASME 2005 Heat Transfer Summer Conference
  • Advances in Electronic Packaging, Parts A, B, and C
  • San Francisco, California, USA, July 17–22, 2005
  • Conference Sponsors: Heat Transfer Division and Electronic and Photonic Packaging Division
  • ISBN: 0-7918-4200-2 | eISBN: 0-7918-3762-9
  • Copyright © 2005 by ASME


The complexity of the circuit traces on the layers of a typical printed circuit board (PCB) poses a serious problem when preparing a thermal model of the board. Thermal analysts have resorted to the use of an average or so called, “effective thermal conductivity”, Keff , treating the board as a homogeneous medium in their PCB thermal models. This approach carries with it the possibility of significant error in the prediction of board temperatures. A typical PCB will have large variations in the density and pattern of the circuit traces, and a single value of Keff cannot accurately represent all board locations. An alternative approach to this long standing problem is presented in this paper. In the new procedure the thermal conductance between pairs of nodes is computed using all of the details of the circuit traces in the internodal region. The trace information is obtained from bitmap files of each circuit layer, files which may be generated from the board CAD files. The conductances are utilized in a general purpose thermal analyzer for computation of system temperatures. Using the details of the local circuit traces in the computation of internodal conductances results in a more accurate thermal model.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In