Full Content is available to subscribers

Subscribe/Learn More  >

Computational Simulation of Supersonic Flow Using Reynolds Stress Model

[+] Author Affiliations
Omid Abouali, Ataollah Rabiee

Shiraz University, Shiraz, Iran

Goodarz Ahmadi

Clarkson University, Potsdam, NY

Paper No. FEDSM2005-77434, pp. 707-712; 6 pages
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME


The case of a supersonic turbulent flows with Mach number 2.5 and Reynolds number 1.23×106 based on the diameter of after body, around a body with incidence angles of 14° was studied. The nose length was 3 times the diameter with a third degree polynomial variation, and total length of the body was 13 diameters. Reynolds Averaged Navier-Stokes Equation was solved using central differencing scheme. The Reynolds Stress Model was used to account for the effect of turbulence on the flow field. The experimental data consist of surface pressure measurement at six axial locations. The pressure distributions were compared with the experimental data and the computer simulation results using Baldwin-Lumax and k-ε models. RSM results were found to show good agreement with the experimental data, while the Baldwin-Lumax model predictions deviated from the experimental data at the leeward on the after body because of a large cross-flow separation. The cross-sectional Mach number contours were also presented. It was shown that in addition to the outer shock, a cross-flow shock wave was also present in the flow region.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In