Full Content is available to subscribers

Subscribe/Learn More  >

Heat Transfer and Fluid Flow in Porous Media With Two Equations Non-Darcian Model

[+] Author Affiliations
A. Nouri-Borujerdi, M. Nazari

Sharif University of Technology, Tehran, Iran

Paper No. FEDSM2005-77145, pp. 637-640; 4 pages
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME


In the present study criterion for local thermal equilibrium assumption is studied. It concerns with the fluid flow and heat transfer between two parallel plates filled with a saturated porous medium under non-equilibrium condition. A two-equation model is utilized to represent the fluid and solid energy transport. Numerical Finite Volume Method has been developed for solving coupled energy equations and the Non-Darcian effects are considered for description of momentum equation. The effects of suitable non dimensional parameters as Peclet number and conductivity ratio has been studied thoroughly. A suitable non dimensional equation proposed in wide range of Peclet number and conductivity ratio. This equation shows the temperature difference between solid and fluid phases.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In