0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Cost Optimization of Combined Cycle Heat Recovery Generator Systems

[+] Author Affiliations
Yongjun Zhao, Hongmei Chen, Mark Waters, Dimitri N. Mavris

Georgia Institute of Technology, Atlanta, GA

Paper No. GT2003-38568, pp. 881-891; 11 pages
doi:10.1115/GT2003-38568
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 1: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3684-3 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

The combined cycle power plant is made up of three major systems, the gas turbine engine, the heat recovery steam generator and the steam turbine. Of the major systems the gas turbine engine is a fixed design offered by a manufacturer, and the steam turbine is also a fairly standard design available from a manufacturer, but it may be somewhat customized for the project. In contrast, the heat recovery steam generator (HRSG) offers many different design options, and its design is highly customized and integrated with the steam turbine. The objective of this project is to parametrically investigate the design and cost of the HRSG system, and to demonstrate the impact on the overall cost of electricity (COE) of a combined cycle power plant. There are numerous design parameters that can affect the size and complexity of the HRSG, and it is the plan for the project to identify all the important parameters and to evaluate each. For this study, the design parameter chosen for evaluation is the exhaust gas pressure drop across the HRSG. This parameter affects the performance of both the gas turbine and steam turbine and the size of the heat recovery unit. Single-pressure, two-pressure and three-pressure HRSGs are all investigated, with the tradeoffs between design point size, performance and cost evaluated for each system. A genetic algorithm is used in the design optimization process to minimize the investment cost of the HSRG. Several system level metrics are employed to evaluate a design. They are gas turbine net power, steam turbine net power, fuel consumption of the power plant, net cycle efficiency of the power plant, HRSG investment cost, total investment cost of the power plant and the operating cost measured by the cost of electricity (COE). The impacts of HRSG exhaust gas pressure drop and system complexity on these system level metrics are investigated.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In