0

Full Content is available to subscribers

Subscribe/Learn More  >

Cavitation Effects on Fluid Structure Interaction in the Case of a 2D Hydrofoil

[+] Author Affiliations
Philippe Ausoni, Mohamed Farhat, François Avellan

Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

Xavier Escaler, Eduard Egusquiza

Universitat Polytechnic de Catalunya, Barcelona, Spain

Paper No. FEDSM2005-77477, pp. 617-622; 6 pages
doi:10.1115/FEDSM2005-77477
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

In the present study, we have carried out an experimental investigation on the fluid-structure interaction caused by Karman vortices in the wake of a truncated 2D hydrofoil. The instrumentation involves a high frequency accelerometer and high speed visualisation. The mechanical response of the hydrofoil to the hydrodynamic excitation is monitored with the help of a portable digital vibrometer. Moreover, a specific optical device is developed to investigate the dynamic of the cavitating wake. The survey of the generation frequency of the Karman vortices with respect to the flow velocity reveals a Strouhal behaviour and three resonances of the hydrofoil. Out of hydro-elastic coupling conditions, the observation of the vortex structures reveals a strong 3D pattern despite the fact that the hydrofoil is 2D. The maximum fluid-structure interaction occurs for the torsional mode where lock-in is observed for upstream velocities ranging from 11 to 13 m/s. In this case, the vortices exhibit a 2D structure. The cavitation occurrence within the core of Karman vortices leads to a significant increase of their generation frequency. We have observed that hydrofoil resonance may be whether avoided or triggered by cavitation development. The study of the Karman vortices dynamic reveals that their advection velocity increases (4%) with the development of the wake cavitation meanwhile their streamwise spacing decreases.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In