0

Full Content is available to subscribers

Subscribe/Learn More  >

Weld Repair of Shell Plates During Seagoing Operations

[+] Author Affiliations
Per R. M. Lindström, Anders Ulfvarson

Chalmers University of Technology, Gothenburg, Sweden

Paper No. OMAE2002-28583, pp. 499-506; 8 pages
doi:10.1115/OMAE2002-28583
From:
  • ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering
  • 21st International Conference on Offshore Mechanics and Arctic Engineering, Volume 3
  • Oslo, Norway, June 23–28, 2002
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3613-4 | eISBN: 0-7918-3599-5
  • Copyright © 2002 by ASME

abstract

An algorithm to estimate the cooling rate of welding seams on the shell plating of a ship, below the waterline, while it is on voyage has been derived. The demand for this technique has arisen from the wish of ship operators to make it possible for the safe repair of ship structures without taking them out of operation. [1] The strength of the shell plating after welding is determined by its metallurgic structure, which is dependent on the cooling rate, its chemical composition and the original grain size of the base material. [2] The cooling rate for this type of welding seam depends on the velocity of the water flow, the distance from the bow, the thickness of the plate, and the heat from the heat input of the welding. The algorithm makes it possible to calculate the cooling rate for a base material affected by a forced flow of fluid by means of Rosenthal’s equation and thus enabling suitable welding parameters to be determined. As the welding parameters can be chosen to fit the specific repair to be made, it is now possible to determine the suitability of a welding procedure in advance. The algorithm is applicable when determining welding parameters at Hot-Tapping operations as well, where the base material is affected by a forced flow of fluid. A number of experiments have been performed and the results support the theoretical model. The research project continues with the aim of finding an algorithm to include the enhanced cooling rate due to the layer of boiling fluid on the back of the base material. A method to improve the measurements of the most important parameter in the algorithm has been developed and makes it possible to build up a quantitative database of typical values for various configurations.

Copyright © 2002 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In