Full Content is available to subscribers

Subscribe/Learn More  >

Steady Analysis of Thermodynamic Effect of Partial Cavitation Using Singularity Method

[+] Author Affiliations
Satoshi Watanabe, Akinori Furukawa

Kyushu University, Fukuoka, Japan

Tatsuya Hidaka

Osaka University, Toyonaka, Osaka, Japan

Hironori Horiguchi, Yoshinobu Tsujimoto

Osaka University, Osaka, Japan

Paper No. FEDSM2005-77387, pp. 567-573; 7 pages
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME


It is well known that the suction performance of turbopumps in cryogenic fluids is much better than that in cold water because of thermodynamic effect of cavitation. In the present study, an analytical method to simulate partially cavitating flow with the thermodynamic effect in a cascade is proposed; heat transfer between the cavity and the ambient fluid is modeled by one-dimensional unsteady heat conduction model under the slender body approximation and is coupled with a flow analysis using singularity methods. In this report, the steady analysis is performed and the results are compared with those of experiments to validate the model of the present analysis. This analysis can be easily extended into unsteady stability analysis for cavitation instabilities such as rotating cavitation and cavitation surge.

Copyright © 2005 by ASME
Topics: Cavitation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In