0

Full Content is available to subscribers

Subscribe/Learn More  >

Evaluation of Ultrasonic Methods for In-Situ Real-Time Characterization of Drilling Mud

[+] Author Affiliations
Judith Ann Bamberger, Margaret S. Greenwood

Pacific Northwest National Laboratory, Richland, WA

Paper No. FEDSM2005-77488, pp. 499-504; 6 pages
doi:10.1115/FEDSM2005-77488
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

A real time multi-functional ultrasonic sensor system is proposed to provide automated drilling fluid monitoring that can improve the capability and development of slimhole and microhole drilling. This type of reliable, accurate, and affordable drilling fluid monitoring will reduce the overall costs in exploration and production. It will also allow more effective drilling process automation while providing rig personnel a safer and more efficient work environment. Accurate and timely measurements of drilling fluid properties such as flow rate, density, viscosity, and solid loading are key components for characterizing rate of drill penetration, providing early warning of lost circulation, and for use in real-time well control. Continuous drilling fluid monitoring enhances drilling economics by reducing the risk of costly drilling downtime, increasing production performance, and improving well control. Investigations conducted to characterize physical properties of drilling mud indicate that ultrasound can be used to provide real-time, in-situ process monitoring and control. Three types of ultrasonic measurements were evaluated which include analysis of in wall, through wall and direct contact signals. In wall measurements provide acoustic impedance (the slurry density and speed of sound product). Through wall and direct contact measurements provide speed of sound and attenuation. This information is combined to determine physical properties such as slurry density, solids concentration and can be used to detect particle size changes and the presence of low levels of gas. The measurements showed that for the frequency range investigated in-wall measurements were obtained over the slurry density range from 1500 to 2200 kg/m3 (10 to 17 pounds solids per gallon of drilling fluid). Other measurements were obtained at densities in the 1500 to 1800 kg/m3 range. These promising measurement results show that ultrasound can be used for real-time in-situ characterization of the drilling process by monitoring drilling mud characteristics.

Copyright © 2005 by ASME
Topics: Drilling

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In