Full Content is available to subscribers

Subscribe/Learn More  >

Potential Dependence of Hydrogen Embrittlement Susceptibility of Ultra High Strength Low Alloy Steel

[+] Author Affiliations
Shin-ichi Komazaki, Rie Maruyama, Tatsuo Honno, Toshihei Misawa

Muroran Institute of Technology, Muroran, Japan

Paper No. OMAE2002-28337, pp. 263-267; 5 pages
  • ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering
  • 21st International Conference on Offshore Mechanics and Arctic Engineering, Volume 3
  • Oslo, Norway, June 23–28, 2002
  • Conference Sponsors: Ocean, Offshore, and Arctic Engineering Division
  • ISBN: 0-7918-3613-4 | eISBN: 0-7918-3599-5
  • Copyright © 2002 by ASME


In order to investigate the susceptibility of the ultra high strength low alloy steel to hydrogen embrittlement, a slow strain rate tensile test was carried out in boric acid-borax buffer aqueous solutions of pH 10 at the potential range from corrosion potential to hydrogen gas evolution potential, including adsorbed hydrogen potential. Experimental results revealed that the susceptibility to hydrogen embrittlement was dependent on the applied potential and increased linearly with increasing applied cathodic potential in the adsorbed hydrogen potential region. On the other hand, in the hydrogen gas evolution potential region, the susceptibility was independent of the applied potential and showed almost no variation. Based on the results obtained, these changes in susceptibility to hydrogen embrittlement with applied potential have been discussed in terms of the variation in reduction behavior of oxide films on the specimen surface.

Copyright © 2002 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In