0

Full Content is available to subscribers

Subscribe/Learn More  >

Blade Tonal Noise Reduction Using Stator Trailing-Edge Articulation

[+] Author Affiliations
David N. Beal, Stephen Huyer

Naval Undersea Warfare Center, Newport, RI

Daniel L. Macumber, Anuradha M. Annaswamy

Massachusetts Institute of Technology, Cambridge, MA

Paper No. FEDSM2005-77446, pp. 191-198; 8 pages
doi:10.1115/FEDSM2005-77446
From:
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME

abstract

The biologically-inspired method of trailing-edge articulation is investigated as a means of reducing tonal noise due to the stator wake / rotor blade interaction in underwater vehicles. This work is experimental in nature and conducted in the closed channel water tunnel at Naval Undersea Warfare Center in Newport, Rhode Island. Tail articulation is carried out with a life scale stator model with hinged flapping tail designed to (i) operate in freestream velocities corresponding to Reynolds number in the range 75,000 < Re < 300,000 and (ii) operate at frequencies up to 30 Hz in order to investigate the range of Strouhal number 0.0 < St < 0.35. Velocity measurements in the active stator wake are carried out by Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV) in order to investigate the effects of tail articulation on the stator wake. Time averaged measurements of the stator wake by LDV show that Strouhal number of the tail articulation has a dominant effect on the time mean stator drag. Instantaneous phase-averaged measurements of the stator wake by PIV show three regimes of the stator wake as Strouhal number is increased; quasi-steady wake spreading, vortex roll up, and strong vortex wake. Ongoing experiments with an instrumented propeller will demonstrate the efficacy of stator trailing-edge articulation on reducing unsteady blade forces.

Copyright © 2005 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In