Full Content is available to subscribers

Subscribe/Learn More  >

Computational Analysis of Various Factors on the Edgetone Mechanism Using High Order Schemes

[+] Author Affiliations
Taku Nonomura

University of Tokyo, Sagamihara, Kanagawa, Japan

Hiroko Muranaka

Tokyo College of Music, Tokyo, Japan

Kozo Fujii

Japan Aerospace Exploration Agency, Sagamihara, Kanagawa, Japan

Paper No. FEDSM2005-77220, pp. 145-153; 9 pages
  • ASME 2005 Fluids Engineering Division Summer Meeting
  • Volume 2: Fora
  • Houston, Texas, USA, June 19–23, 2005
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 0-7918-4199-5 | eISBN: 0-7918-3760-2
  • Copyright © 2005 by ASME


Flow fields of two dimensional jets impinging on the sharp edge are computationally simulated and the effect of various parameters on the edgetone that is created by the flow interaction is investigated. Compressible Navier-Stokes equations are used so that acoustic waves are captured accurately as a part of feedback-loop. For numerical accuracy, Pade type compact finite difference scheme are used. First parameter is the jet velocity. Computational result shows good qualitative agreement with the experiment. Edgetone frequencies obtained by the computation also show good correspondence with those of experimental study in the past. Second parameter is the nozzle lip thickness. Although not considered in the computational study in the past, the nozzle lip thickness influences to the results. Amplitude of acoustics of larger nozzle lip is greater than that of smaller ones. This effect may comes from the fact that acoustic wave as a part of feedback loop is emphasized by nozzle lip. Third parameter is the jet-profile. Four different jet-profiles with the same maximum velocity (from top-hat profile to parabolic profile) and four different jet-profiles with the same mean velocity are computed. The mean jet velocity appears to have strong influence on the stage. The results also indicated that the mean jet velocity and the jet-profile have influence on edgetone frequencies.

Copyright © 2005 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In