0

Full Content is available to subscribers

Subscribe/Learn More  >

Fault Diagnosis of Combined Cycle Gas Turbine Components Using Feed Forward Neural Networks

[+] Author Affiliations
S. Camporeale, L. Dambrosio, A. Milella, M. Mastrovito, B. Fortunato

Politecnico di Bari, Bari, Italy

Paper No. GT2003-38742, pp. 549-561; 13 pages
doi:10.1115/GT2003-38742
From:
  • ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference
  • Volume 1: Turbo Expo 2003
  • Atlanta, Georgia, USA, June 16–19, 2003
  • Conference Sponsors: International Gas Turbine Institute
  • ISBN: 0-7918-3684-3 | eISBN: 0-7918-3671-1
  • Copyright © 2003 by ASME

abstract

A diagnostic tool based on Feed Forward Neural Networks (FFNN) is proposed to detect the origin of performance degradation in a Combined Cycle Gas Turbine (CCGT) power plant. In such a plant, due the connection of the steam cycle to the gas turbine, any deterioration of gas turbine components affects not only the gas turbine itself but also the steam cycle. At the same time, fouling of the heat recovery boiler may cause the increase of the turbine back-pressure, reducing the gas turbine performance. Therefore, measurements taken from the steam cycle can be included in the fault variable set, used for detecting faults in the gas turbine. The interconnection of the two parts of the CCGT power plant is shown through the fingerprints of selected component fault models for a power plant composed of a heavy-duty gas turbine and a steam plant with a single pressure recovery boiler. The diagnostic tool is composed of two FFNN stages: the first network stage is addressed to pre-process fault data in order to evaluate the influence of the single fault variable on the single fault condition. The second FFNN stage detects the fault conditions. Tests with simulated data show that the the diagnostic tool is able to recognize single faults of both the gas turbine and the steam plant, with a high rate of success, in case of full fault intensity, even in presence of uncertainties in measurements. In case of partial fault intensity, faults concerning gas turbine components and the superheater, are well recognized, while false alarms occur for the other steam plant component faults, in presence of uncertainties in data. Finally, some combinations of faults, belonging either to the gas turbine or the steam plant, have been examined for testing the diagnostic tool on double fault detection. In this case, the network is applied twice. In the first step the amount of the fault parameters that originate the primary fault are estimated. In the second step, the diagnostic tool curtails the contribution of the main fault to the fault parameters, and the diagnostic process is reiterated. In the examined fault combinations, the diagnostic tool was able to detect at least one of the two faults in about 60% of the cases, even in presence of uncertainty in measurements and partial fault intensity.

Copyright © 2003 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In